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Abstract This paper proposes a method for predicting
the complexity of meshing computer aided design
(CAD) geometries with unstructured, hexahedral, finite
elements. Meshing complexity refers to the relative level
of effort required to generate a valid finite element mesh
on a given CAD geometry. A function is proposed to
approximate the meshing complexity for single part
CAD models. The function is dependent on a user de-
fined element size as well as on data extracted from the
geometry and topology of the CAD part. Several
geometry and topology measures are proposed, which
both characterize the shape of the CAD part and detect
configurations that complicate mesh generation. Based
on a test suite of CAD models, the function is demon-
strated to be accurate within a certain range of error.
The solution proposed here is intended to provide
managers and users of meshing software a method of
predicting the difficulty in meshing a CAD model. This
will enable them to make decisions about model
simplification and analysis approaches prior to mesh
generation.

Keywords Time to mesh Æ Mesh complexity Æ Blend
detection Æ Geometry clean-up

1 Introduction

Mesh generation is often the most time consuming part
of finite element-based computer simulations. Research
in mesh generation has attempted to remedy this issue
with varying degrees of success. A main difficulty in
solving the meshing issue is the extent of the problem
space. Mesh generation software is expected to auto-
matically create meshes for any shape created by design
engineers or other upstream sources. When the set of
shapes given to the mesh generator is restricted, auto-
matic mesh generation is indeed possible. Unfortunately,
the problem space cannot usually be restricted.

Currently, shapes or computer aided design (CAD)
models are given to analysts to perform the computa-
tional simulation. While meshing a model, the analyst
frequently finds problems that must be fixed by the de-
sign engineer who created the model. Once those prob-
lems are fixed, new problems may be found, and an
iterative process ensues until a mesh is finally generated.
At times it may even be necessary to discard the design
model and build a new model more amenable to mesh
generation. After the model is cleaned, or its problems
removed, it can usually be meshed automatically with
tetrahedral or mixed elements. If the analysis dictates all
hexahedral elements, additional geometry manipulations
may be required before the mesh can be generated. This
is due to the increased complexity of generating a
boundary-conforming all-hexahedral mesh for arbitrary
geometry. Current state-of-the-art for reliable hexahe-
dral mesh generation dictates that volumes be decom-
posed such that sweeping or two and one-half
dimensional (2.5 D) algorithms be employed. For tet-
rahedral mesh generation, model cleanliness typically
dictates success in meshing, while for hexahedral mesh-
ing both cleanliness and sweep-ability contribute to its
success. Cleanliness of the model and the ease with
which a given meshing algorithm can mesh it contribute
to the goodness or complexity of the model. Meshing
complexity for a given model serves as the measure of
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difficulty required for an analyst to generate a valid
mesh for that model.

This paper describes a method to quantify the
meshing complexity of CAD models for the purpose of
unstructured hexahedral mesh generation. Although
tetrahedral meshing remains an important tool for
computational simulation, experience has shown that
complexity of the model does not affect the time to mesh
as acutely for tetrahedral meshing as it does for hexa-
hedral meshing. In addition, hexahedral meshes remain
the mainstay of, and a necessity for, a majority of ana-
lysts at the US National Laboratories. Although some
aspects of this work may be applicable for meshing CAD
models in general, the principal focus is directed at the
hexahedral meshing problem.

A new metric is proposed to estimate meshing com-
plexity of a CAD part. An evaluation of the metric is
performed through a study of generating unstructured
hexahedral meshes for 24 CAD geometries. While little
effort has been directly aimed at quantifying meshing
complexity in the literature, a great deal of research has
been performed to identify and remove geometry and
topology errors in CAD models, for the purpose of mesh
generation. This process is commonly referred to as
model clean-up. The obvious relationship between model
clean-up and meshing complexity is that geometry and
topology errors often lead to increased model
complexity and time spent on the meshing process.
Various approaches for model clean-up are reviewed.
Additionally, approaches and techniques for generating
unstructured hexahedra are also reviewed.

1.1 Model clean-up

From a meshing perspective, the CAD model can typi-
cally have two kinds of problems: definition errors and
representation problems. Both typically cause more time
to be spent in the meshing process. Definition errors are
those that deal with how the model is defined, both in
geometry and topology. Representation problems can be
more subjective and are dependent on how the model
will be used.

1.1.1 CAD model repair

Computer aided design model repair is defined as the
process of fixing geometric and topological definition
errors in a design model. CAD models are represented
by one of the two methods: boundary-representation or
b-rep, and constructive solid geometry or CSG. Cur-
rently, most commercial vendors use the b-rep. B-rep
models are represented by mathematical descriptions
and lower- order boundary topology. For example, an
edge is defined by a mathematical curve and is bounded
by two vertices at the ends. The curve may be defined by
a mathematical description including a simple line-seg-
ment, arc, or a more complicated B-spline. Similarly, a

mathematical surface, and boundary edges define a face.
Volumes are defined by a series of connected faces that
wholly enclose a specific region.

Computer aided design model repair typically involves
fixing the mathematical curve and surface definitions.
Work in this area has focused on detecting errors within
the CAD model, either directly in the native format (in
the software it was created) or in a third party software
package. There are many different errors which can be
detected. These include: inverted faces, gaps between
surfaces in a volume, folded geometry, surface geometry
with no bounding face, faces with no finite area, self-
intersecting edges and faces, face/edge sloppiness,
boundary edges that do not lie on the faces, overlapping
faces, etc. [1–3]. There are several vendors that offer
packages that detect and fix these problems. Some of
these include: ACIS 3D Toolkit [4], Parasolid BodyShop
[5], and CADfix [6]. Another tool called CADIQ [7],
connects directly with the major vendors of CAD soft-
ware and interrogates models for errors. In environ-
ments where this package/software is used, the cost
savings to analysts could be large since the majority of
the time spent generating a mesh is used in iterating with
the design engineer on a ‘‘good’’ base model [2].

Computer aided design Model Repair often appears
unrelated to meshing since it is generally assumed at the
meshing stage that the CAD models used for simulations
are valid. Problems with the validity of the model are
assumed to be taken care of upstream, or in the design
stage. Unfortunately, designers have no incentive to
validate their models for use in mesh generation since
such models are typically created for visualization or
manufacturing where model quality is less important [8].
In recent years, more meshing related software has been
developed to fix these problems or build meshing algo-
rithms that are less sensitive to geometry and topology
definition errors [9, 10]. In either case, it has been clearly
demonstrated that CAD Model Repair is part of the
overall process in going from design to analysis (D2A)
and should be counted as part of any system that eval-
uates model complexity with respect to meshing.

1.1.2 Model simplification

Model Simplification involves steps that are taken to
detect and alter representation problems of a solid model
to make mesh generation easier or possible. CAD
models are typically built to accurately capture the detail
of the real problem; a method which presents practical
issues for discrete, numerical simulations. For example,
Fig. 1 shows a part that has a filleted section ‘‘colliding’’
with the boundary of another face, producing a tan-
gential intersection of the boundary edges. This tan-
gential intersection is difficult to mesh at any realistic
element size; but it is especially hard to mesh with
quadrilateral elements. This tangency is not a result of
how the CAD model is defined, but rather how it is
represented with respect to its proposed use. Model
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simplification is the process of detecting and removing
such representation problems that make mesh genera-
tion difficult.

New approaches for simplifying CAD models for
mesh generation have recently been proposed and suc-
cessfully implemented [11–16]. These methods scan the
model and search for specific preprogrammed problems,
such as stray vertices, sliver surfaces, or small fillets.
When the problems are found, they are either fixed in
the native geometry subsystem or with a system-inde-
pendent method. Sheffer et al. [11] first referred to this
system-independent clean-up method as ‘‘Virtual
Topology‘’. Virtual topology provides a way to change
the topological representation of the model by layering
modifications on the model without changing the model
itself. Many of the approaches mentioned [12–16]
automate the removal of preprogrammed problems;
however, this process is often subjective. It is, therefore,
difficult to predict which problems can be removed to
make meshing easier and which problems the mesh
generators must handle for the purposes of analysis. For
example, a fillet in a CAD model may be included to
dissipate stress concentrations at a critical region or it
may be merely cosmetic.

1.2 Unstructured hexahedral mesh generation

The study of meshing complexity is restricted here to
generating unstructured hexahedra. Despite numerous
efforts [17–24, 25, 26], there remains an absence of a
satisfactory high quality automatic hexahedral meshing
scheme. Instead, many researchers have attempted to
improve the manual methods of generating hexahedral
elements, namely sweeping and mapping. Some of these
improvements include automating the traditional ap-
proaches by extending the sweeping and primitive
algorithms and developing new automation control
algorithms.

Mesh primitives are a set of pre-packaged meshes for
typical or common shapes like squares, triangles, and

circles in 2D and cubes, tetrahedrons, and spheres in 3D.
Sweeping is essentially an extension of a cylinder prim-
itive where the top circular surface mesh is extruded
through the volume into hexahedrons. Sweeping re-
quires that the ‘‘linking’’ surfaces or sidewalls of the
sweep axis be meshed with a structured or regular
meshing scheme like mapping [27].

In a typical manual approach, a user will decompose
a part into pieces that can be meshed with either a
primitive or sweeping algorithm. For instance, the
model shown in Fig. 2a is not simply sweepable along
the dominant axis of the part due to the protruding
smaller cylinder on the side. In order to mesh this part, a
sweep path must be cut through the larger material in
order to sweep the side cylinder as shown in Fig. 2b.
Additionally, the user must be careful while creating this
sweep path not to interfere with the interior of the part.
The final decomposition and mesh of this model is
shown in Fig. 2c.

Decomposing all the parts into primitives or source-
to-target sweeps is tedious and often unnecessary. Pre-
processing steps to automatically perform a minimal
amount of ‘‘pseudo’’ decomposition are added to extend
sweeping and mapping. The mapping algorithm is ex-
tended to submapping, which uses virtual subdivision
based on the boundary mesh to decompose a part into
mappable sub-regions [28]. The final result in both 2D
and 3D for the submapping algorithm remains a struc-

Fig. 2 Swept meshing approach coupled with decomposition

Fig. 1 Geometry problem due to a fillet
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tured grid. Submapping in 2D is heavily relied upon to
extend the sweeping algorithm by allowing more free-
dom with the linking surfaces. Sweeping is first extended
to ‘‘pick-up’’ additional source faces in the sweep as it
progresses through the axis. The algorithm is further
extended to not only pick-up faces but also terminate
them as the sweep travels along the axis [29]. This
technique is referred to as ‘‘multi-sweep’’ or ‘‘Cooper-
ing’’.

Primitives and sweeping often rely on user interven-
tion to prescribe exact boundary intervals, surface me-
shes, and sweep directions. When meshing large
assemblies of parts, managing and entering this data can
become overwhelming, even for experienced users.
Automation for controlling and relaxing the amount of
user-supplied data has been another area of research in
hexahedral meshing. Two algorithms that have sub-
stantially reduced this problem are automatic scheme
selection and automatic interval assignment. Automatic
scheme selection uses a sweepability proof to detect
shapes that can be meshed with sweeping and other
primitives [30]. The algorithm automatically assigns the
proper surface schemes and determines proper sweep
directions. The automatic interval assignment algorithm
solves a system of linear, integer constraint equations to
provide proper edge intervals for meshing [31]. The
constraints are based specifically on the requirements of
the meshing algorithms that are to be used.

An approach to estimating the meshing complexity of
various CAD geometries is presented in this paper. The
resulting information is intended to provide managers
and users of meshing software a method of predicting
how difficult a CAD model will be to mesh, enabling
them to make decisions about model simplification and
analysis approaches prior to meshing. The developments
here pertain to individual parts in an assembly. Further
developments would necessarily include the consider-
ation of complexity of the entire assembly.

The complexity of meshing a CAD model is quanti-
fied using a metric. The components of the complexity
metric discussed in this paper are intended to aid users in
identifying features in the geometry that make mesh
generation difficult. Such information will further aid in
deciding if these features are necessary and what effect
their removal will have on the meshing process.

2 Meshing complexity

Meshing complexity is a measure of the level of difficulty
encountered in meshing a CAD geometry. Several as-
pects are known to make mesh generation difficult
including near- tangencies, topology arrangement, etc.
Meshing complexity involves the translation of these
difficulties into a metric that quantifies them. For in-
stance, there are many geometries that have extremely
geometrically complex curves and surfaces but are me-
shed trivially. Likewise, one could easily construct a
model using the linear curves and planar surfaces that is

nearly impossible to mesh. The problem posed by
meshing complexity is finding what actually makes
meshing difficult. Since many of these factors may be
non-quantifiable, a reproducible and all-encompassing
solution may be intractable. Instead, a solution is pro-
posed that focuses on a subset of quantifiable issues to
develop a useful measure for mesh complexity.

2.1 Variables of meshing complexity

Finding a single metric that accurately captures the
meshing complexity of a solid is a complex problem. The
problem can be viewed as determining a function that
evaluates the complexity of a solid with respect to
meshing. In developing such a function, the following
variables may be considered: element type, tet versus hex
; element structure, structured versus unstructured; ele-
ment size, coarse versus fine; topology; geometry;
assembly configuration, multiple solids; finite element
analysis (FEA) application, e.g. boundary layers; user
expertise; meshing software maturity; and choice of
meshing algorithm. To reduce the scope of the problem,
meshing software maturity and user expertise should
naturally be removed because both are highly unpre-
dictable.

It is assumed here that models will be meshed with
unstructured hexahedra for structural mechanics appli-
cations, thus fixing the variables of element type, element
structure, and finite element analysis application. Also, by
choosing unstructured hexahedra and in the absence of
an automatic algorithm, the choice of meshing algorithm
variable will be assumed to be the methods discussed in
Sect. 1.2, namely sweeping and mapped mesh generation
(including the multi-sweep and submapping algorithms).
Further, assembly models are not considered. With these
assumptions and restrictions, this paper seeks an
approximation of the meshing complexity function with
the following variables: element size, topology, and
geometry.

Even when limiting the scope of the proposed mesh
complexity metric to these factors, it should be noted
that by its very nature, the values that go into defining
the metric are somewhat heuristic. Extensive experience
with meshing complex models has led to the emergence
of the proposed complexity metric. Given the same set of
circumstances, another individual may develop the
metric in a different manner; however, the principles
proposed in this work are universal.

2.2 Meshing complexity function

The chief problem for unstructured hexahedral mesh
generation lies in decomposing the model into suitable
parts that are meshable with two available algorithms,
namely: multi-sweep and submapping. It is, therefore,
desirable for the approximation function to capture the
shape of the part and to determine whether or not it can
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be swept. Variables that contribute to the shape of the
model are termed base metrics. The approximation
function should also consider those features in a model
that make it difficult to mesh, such as topology and
geometry problems like small curves, sliver surfaces, and
small angles. Variables that are detrimental to meshing
the part are termed negative metrics. There are various
ways to empirically combine the base and negative
metrics to compute mesh complexity (C). The following
is proposed for such a combination:

C ¼
P

i ¼ 1nwiBi

1þ
Pk

j¼1
Nj

 !2
; ð1Þ

where C is the new meshing complexity approximation
function; 0 £ C £ 1; n is the number of base metrics; Bi

is the base metric, i; 0 £ Bi £ 1; Nj is the negative
metric, j; and wi is the base weight, i, with

Xn

i¼1
wi61 ð2Þ

C = 1 for geometries that are trivial to mesh and van-
ishes for shapes that are challenging. It should be noted
that Eq. 1 does not assume any specific factors or
number of factors for Ni. As such, the complexity
equation can easily be augmented to suit new negative
metrics as they are determined to be useful. For the
purposes of this study, and from extensive experience,
we have delineated a specific set of base and negative
metrics on which we will develop our results.

The following base metrics are used: inverse topology
count, sweep detection, and cartesian edges. The negative
metrics considered most effective are the number of:
small curves, small surfaces, close loops, small and large
angles, bad CAD definitions, groups of blend faces, and
tangential surface intersections. The one exception to Eq.
(1) is where the sweep detection metric has a value of
unity. If this occurs, then C is set equal to unity, as will
be explained in Sect. 3.1.2.

For the purpose of this research, a software pro-
gram, SEER, was implemented to compute the mesh-
ing complexity metric. SEER uses the common
geometry module (CGM) [32] for its geometry query
and model representation, and currently uses ACIS as
the underlying geometric core. For input, SEER re-
quires a solid model in the ACIS SAT, IGES or STEP
formats. The user of the software must supply the
solid model to be measured and the desired element
size.

3 Computation of metric

The meshing complexity metric is computed by exam-
ining the CAD model and measuring the base and
negative metrics of the meshing complexity function.

3.1 Base variables

In the proposed metric, three base metrics are included,
namely, inverse topology count, sweep detection, and
cartesian edges. The purpose of base variables is to
provide a starting range for the metric. Many parts that
are difficult to mesh do not display any negative aspects.
The base variables must, therefore, by themselves cal-
culate the difficulty of the shape with respect to meshing.
These three base variables do not capture the complexity
entirely, but do offer an adequate beginning for most
models.

3.1.1 Inverse topology count

The inverse topology count variable, I, is defined as:

I ¼ 1

2

6

F
þ 12

E

� �

while
6

F
þ 12

E
� 2; otherwise I ¼ 1 ð3Þ

where F is the number of faces in the model and E is the
number of edges. The scalar numerators ensure that the
variable equates to unity for a cube. The restriction of
limiting the metric to unity comes from shapes that have
fewer faces and edges than that on a cube, like a sphere
that has one face and zero edges.

The inverse topology count variable arises from the
observation that as the number of topological entities
increase, the difficulty of meshing the object also in-
creases. If this were strictly the case, the inverse topology
count variable would be the only variable needed. This,
of course, is inaccurate since many cases have numerous
faces and edges but are easy to mesh. Likewise, there are
cases where there are relatively few faces and edges that
are difficult to mesh. However, as a rule, the inverse
topology count generally reflects the difficulty of mesh-
ing directly and as such is considered a relevant base
variable.

3.1.2 Sweep detection

Sweep detection directly addresses the major goal of the
meshing complexity function: to identify models that are
sweepable or to determine how easy it would be to
transform the models into sweepable pieces. The sweep
detection variable is based on the ideas proposed by
White and Tautges [30]. This method, called auto sweep
detection, connects the linking surfaces and traverses
them in the opposite direction to determine sweep
direction and source/target face identification. The
method, however, does not differentiate between parts
that are almost sweepable and parts that are not. The
sweep detection variable proposed here uses the auto
sweep detection method with some modifications to
determine how ‘‘close’’ to sweepable a part would be.

Pseudo code for the algorithm to determine the sweep
detection variable is given in Algorithm Table 1. In step
2 of Algorithm Table 1, the auto sweep detection algo-
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rithm is called. The auto sweep detection algorithm
consists of four procedures to determine if a part is
sweepable.

The first procedure is to classify the Cartesian tra-
versal types of the interior vertex angles for each surface
and set the surface meshing schemes. At each vertex on
every surface the interior angle is calculated by mea-
suring the angle between the two edges that join at that
vertex. For non-linear edges, the tangent of the curve
where it hits the vertex is used. The Cartesian traversal
type, or vertex type, is assigned by rounding the angle to
the closest Cartesian angle of 90, 180, 270 or 360�. Based
on the Cartesian angles the following values are assigned
to the vertices for each surface (a vertex can have more
than one vertex type value since it can be used differently
for each surface of which it is a part): 1 for 90�, 0 for
180�, �1 for 270� and �2 for 360�. After all the vertices
on a surface have been assigned, the meshing scheme of
the surface is assigned based on the vertex types. If the
sum of the vertex types on the surface is equal to four,
then the surface is submappable. If the sum is not equal
to four, then the meshing scheme is set to an automatic
unstructured scheme, such as Paving [33] or Q-Morph
[34].

The second procedure is to find chains or complete
loops of submappable surfaces. Submappable surfaces
have a logical 2D parameter space, i–j. The edges of the
surfaces can be classified into four different boundaries
of the parameter space: +i, �i, +j, and �j, where �i is
opposite +i and �j is opposite +j. When submappable
surfaces are connected with common edges, the param-
eter space can continue through to adjacent surfaces
following the opposite parametric sides. Figure 3 shows
an example of how the submappable surfaces are con-
nected to form loops or chains of surfaces connected
through opposite sides in the parameter space. The ar-
rows in the Figure are drawn to indicate the direction of
the sweep chains. For this example four chains are vis-
ible with one additional chain hidden in the hole. The
chains are considered complete if and only if they are
non-self intersecting, meaning that the chain cannot
begin in the ‘‘i’’ direction on a surface and then later
cross the same surface in the ‘‘j’’ direction. Each edge in
the direction maintained by the chain must also be
connected to a submappable surface, or in other words,
the chain must be complete or fully wrapping. Presence
of these chains is a prerequisite for the volume to be
swept [30].

In the third procedure, the edges of the volume are
classified into Cartesian or edge types similar to the
classification of the vertices for the faces. The surface
normals on each side of every edge are used to measure
the dihedral angles between the two faces connected at
that edge. The dihedral angle is rounded to the nearest
Cartesian angle and classified to the values of: 1 for 90
degrees, 0 for 180 degrees, �1 for 270 degrees and �2 for
360 degrees.

Finally, the fourth procedure is to traverse the chains
found in the second procedure. To start, a face is chosen
that is either not submappable or if all surfaces are
submappable then an arbitrary face is taken and set to
be the initial source face for the sweep. Each of the faces
of the volume are reached by traversing from the edges
of the first face, then recursively the edges of the next
faces are found in a depth first search. The source and
target faces are found by ensuring that between each
source or target face there is a complete chain that runs
in the direction opposite to the traversal, and that there
are non-zero edge types between the source/target sur-
faces and the chains. For example, in Fig. 3 let the initial
face be Face 10. The edge between Face 10 and Face 9
has an edge type of 1. Face 9 is also in a complete chain
and the edge between Faces 9 and 10 is not part of the
chain. The algorithm would then move from Face 9 to
Face 8. The common edge between Faces 8 and 9 has an
edge type of �1, indicating that Face 8 should also be a
source face with Face 10. The search would continue
across Faces 6 and 5 until Face 11 (underneath) would
be found and identified as a target face because of the
edge type. This process would continue until all the faces
are traversed, resulting in Faces 10, 8, 4 and 2 being
selected as source faces and Face 11 as the target face.

After auto sweep detection is run, as indicated in
Algorithm Table 1, if the CAD part is not determined to
be sweepable, the part is tested in step 5 to see if it is one

Fig. 3 Sweeping chains

Table 1 Sweep detection metric algorithm

1. Let V be the CAD part being measured
2. If V is sweepable (use auto sweep) THEN
3. LET C = 1.0;
4. ELSE
5. If V is a primitive shape, THEN
6. LET C = 0.95;
7. ELSE
8. LET C = f (V), where f is the partial sweep detection metric
9. RETURN C:
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of the several primitives such as: sphere, half sphere,
torus, tetrahedron, or cone.

If the part is neither a primitive nor sweepable, the
function f (V), or the partial sweep detection metric, is
used to determine the sweep detection variable. The
pseudo code for f (V) is given in Algorithm Table 2.
Step 6 of Algorithm Table 2 is picking the corners of the
faces that are ‘‘forced’’ to be represented with the rect-
angular meshing primitive. Corner picking, devised by
Mitchell [35], is applied to choose the most appropriate
corners of the face.

In step 7, the third procedure of the auto sweep
detection algorithm is redone; namely chains of linking
faces are determined. If no chains are found, the sweep
detection metric is set to zero in step 9. Otherwise, in
step 11, the chains are used to compute the sweep
detection metric S. The sweep detection metric is com-
puted as:

S ¼ Mb �Mh �Mc �MAX
TCF

q
;

Pm
i¼1
Pl

j¼1 Aij
Pq

k¼1 Ak

 !

; ð4Þ

where Mb, Mh, and Mc are modifiers based, respectively,
on how much the chains cover the volume, the number
of cylinder holes, and the large numbers of chains
present; MAX is the function to return the maximum of
two scalars; TCF is the number of faces in the chains; q
is the number of faces in the volume; m is the number of
chains; l is the number of faces in chain i; Aij is the area
of the face j in the chain i; and Ak is the area of the face k
in the volume.

The modifier Mb is determined by comparing the
union of all the bounding boxes of the chains and the
bounding box of the volume. The comparison is made
by checking the number of directions out of three (x, y,
and z) in which the bounding box of the chains is equal
in size to the bounding box of the volume. For example,
if the bounding box for the chains is {{0,0,0}, {1,1,1}}
and the bounding box of the volume is
{{0,�1,0},{1,1,1}} then the boxes will be equal in two
directions. The modifier, Mb, is equal to 0.9 if the boxes
are equivalent in no directions, 1.4 if there is one
direction, 2.0 if there are two directions, and 4.0 if the
boxes are equivalent in all three directions. These values
were determined through numerical experiment.

The modifier Mh is determined by finding the number
of chains that are formed by simple cylinder holes with

one or two surfaces constituting the entire chain. In
general, these types of chains do little to determine how
sweepable the part is, so this circumstance is viewed as a
reducing modifier. Mh is computed by finding the frac-
tion of chains that are not cylinder holes out of the total
number of chains. This modifier is lower bounded to be
0.01 since the presence of holes indicates some form of a
sweep direction.

The final modifier Mc is another reduction factor to
reflect whether there are numerous chains on the vol-
ume. If there are more than ten chains, their presence
can indicate that the volume has many sweep directions,
meaning that meshing may be more difficult than vol-
umes that have relatively few sweep directions. There-
fore, if the bounding box of the chains is not equivalent
in all three directions to the bounding box of the vol-
ume, and there are more than ten chains, Mc is set to be
equal to the inverse of the number of chains; otherwise,
Mc is unity.

There are, of course, many counter examples for the
sweep detection metric, which is why it is only a part of
the entire meshing complexity metric. However, as a
general rule, the metric is shown to yield lower values for
geometries that are more difficult to mesh and correctly
predicts higher values for trivial geometries.

3.1.3 Cartesian edges

The Cartesian edges metric is intended to capture the
degree to which the volume is of a ‘‘blocky’’ nature. In
general, a blocky volume is easier to mesh since the
hexahedra fit easier when the faces are aligned orthog-
onally. The metric is computed by first counting the
number of edges connected to planar surfaces with
Cartesian dihedral angles between them. For this metric,
Cartesian dihedral angles are specified to be 90, 180 and
270�, respectively. Dihedral angles that fall within three
degrees of these values are considered Cartesian. After
the number of Cartesian edges is found, the metric is
calculated by dividing this number by the total number
of edges in the volume. The Cartesian Edges ratio is
found to be inaccurate and arbitrary when it is less than
0.4. Therefore, the metric is set to zero for volumes with
ratios of less than 0.4, and set to the ratio itself for ratios
greater than 0.4.

3.1.4 Base metric weights

The weights for the three base metrics were computed by
trial and error. It was found that 0.1 would be the best
weight for the Inverse topology count metric. For the
Sweep detection metric, the best weight was experimen-
tally found to be 0.5. Again by numerical experiments,
the Cartesian edgesmetric was given a ‘‘stepping’’ weight
based on the metric itself. The Cartesian edges weights
are defined in Algorithm Table 3. It is acknowledged
that if the Cartesian Edges metric is less than 0.6 then
the sum of the weights will be less than one, as reflected

Table 2 Partial sweep detection metric algorithm

1. FOR EACH fave f in v
2. LET X (f) be the mesh scheme of f
3. LET Y(f) be the number of holes in f
4. If X(f) is unstructured AND y(f) is > 1 THEN
5. LET X(f) = Rectangle primitive
6. Choose the best corners for f
7. LET LC be the number of linking chains in v
8.If LC == 0 THEN
9. RETURN 0.0
10. ELSE
11. return S(V)
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in Eq. (2). It was, however, necessary to reflect the in-
creased importance of the Cartesian Edges metric as the
value of the metric increased.

3.2 Negative metrics

The negative metrics are used to cause a decrease in the
value of the meshing complexity metric. The negative
metrics reflect problems found in the model that will be
detrimental to mesh generation. This study was unable
to determine a ranking of these problems in terms of
their impact on the meshing process, and as such they
are weighted equally at this time. Additionally, test re-
sults revealed that all the negative metrics were rarely
found in a single part. This indicates that meshing
complexity can vary greatly between parts, and that the
list of negative metrics mentioned here may be incom-
plete. New negative metrics may be added to the existing
list until a general metric is found.

The negative metrics identified during this study are
now presented. Unlike the base metrics, these are all
determined by counting the number of occurrences of a
given problem. Additionally, many of these metrics are
functions of element size, meaning that if the desired
element size for meshing the volume changes it could
impact the results of these metrics.

3.2.1 Number of small edges, faces and close face loops

Small edges, faces, and close face loops all adversely
affect the meshing process, making it difficult and
sometimes impossible to generate a reasonable quality
mesh. In fact, such artifacts often lead to robustness
issues with automatic surface meshing algorithms unless
mesh sizing in the region is performed carefully. Finding
these entities visually is often difficult. Additionally,
before the final mesh is achieved, these entities must
usually be removed from the model, adding additional
time to the mesh generation process.

The number of small edges is equal to the number of
edges in the model with a length less than or equal to 1/5
the element size given as input.

The number of small faces is equal to the number of
faces with a hydraulic radius less than or equal to 1/5 the
element size. The hydraulic radius [15] is computed as,

rh ¼ 4A=P ;

where A is the area of the face and P is the total length of
the perimeter of the face.

The number of close loops metric is equal to the
number of minimum distances between loops that are
less than or equal to 1/5 the element size.

3.2.2 Number of small and large angles

Small and large angles can also affect the quality of the
mesh. When the angles are very small, the geometry must
be modified in order to generate a suitable mesh. The
angles for this metric are calculated at vertices on a
surface and curves on a volume. For vertices the angle is
calculated by measuring the angle between the tangents
of the two edges at that vertex on a particular surface.
For edges the angle is calculated by measuring the angle
between the normal vectors of the two faces that share
the common edge. The normals are measured at the mid-
point of the edge and assumed to be constant throughout
the length of the edge. The number of small and large
angles is computed by counting all the vertex and edge
angles that are obtained by measuring all the vertex and
edge angles that are smaller than 20� or larger than 340�.

3.2.3 Number of bad CAD definitions

The ACIS geometry engine [4] is used in this study to
represent the underlying geometric definitions of the
CAD models. As mentioned in Sect. 1.1.1, for various
reasons these definitions may be inaccurate or faulty.
Many of these problems can be fixed via the healing
technologies available in various software packages. In
general, the presence of these problems indicates an in-
creased time to generate a mesh. If the problems can not
be fixed, meshing can be difficult since these problems
can limit the use of decomposition tools at one extreme
and make meshing impossible without rebuilding the
geometry at the other. The ACIS geometry engine pro-
vides the ability to detect geometry definitions errors.
For computing this metric, the ACIS software is queried
directly to determine how many entities have problems.

3.2.4 Number of groups of blend faces

Blend faces, more commonly referred to as fillets and
rounds, are commonplace in CAD models. Their pres-
ence is usually directly related to increased meshing
times, especially for hexahedral meshing. Cartesian edges
are typically best for mesh quality in hexahedral meshing.
Additionally, presence of blend faces usually does two
things to a model: add extra topology that hinders mesh
generation, and remove topology that is needed for
sweeping. An example of this is shown in Fig. 4 where a
brick of dimension 10 units has all of its curves blended
with a radius of 1.0. The result is that this trivial meshing
shape becomes more difficult and requires topological
modifications before it can be meshed.

Table 3 Cartesian edge metric weight calculation

1. LET CE be the computer cartesian Edge metric value
2. LET wCE = 0.0 where wCE is the weight of the cartestian Edge

metric
3. If CE > = 0.4 AND CE <0.5 THEN
4. LET wCE = 0.1
5. ELSE IF CE >=0.5 AND CE < 0.6 THEN
6. LET wCE = 0.2
7. ELSE IF CE >= 0.6 THEN
8. LET wCE= 0.6
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The best approach for dealing with these entities for
hexahedral meshing is to remove them and return the
model to Cartesian intersections. In many cases this is
not allowable since, while some of the blends are present
for appearance, many more are there for physical rea-
sons. Regardless of whether or not the blends can be
removed, their presence leads to mesh generation chal-
lenges and increases the time required to generate a
mesh, making it important for the meshing complexity
metric to capture these faces.

A blend group is a set of connected blend faces that
are generally blending the same area although the edge
they blend may change for various reasons. Because of
these changes, the number of blend groups is found ra-
ther than the number of blend faces. While others have
attempted to detect blend faces [15], a new method is
presented here.

For blend face detection, the following three rules are
made. First, blend faces have at least one edge where the
faces attached to that edge have a dihedral angle of 180�
at the edge. This edge is called the parallel edge. Second,
an edge opposite the parallel edge has a Cartesian angle,
90, 180, 270�, between the two faces that are attached to
it. The edge opposite the parallel edge is called the
opposite edge. And third, the angle between the face
normals on the parallel edge and the opposite edge is
also Cartesian. An example of a blend face that fits these
three rules is shown in Fig. 5 where the parallel and
opposite edges are identified.

Fig. 5 Blend face

Fig. 6 Blend detection on test parts 1(a), 20(b) and 5(c)

Fig. 4 Brick with all edges blended

84



To find blend faces, the model is searched for faces
that meet these criteria. Determining the opposite edge is
the most difficult part. The algorithm starts with the
parallel edge, then searches the other edges on the face
for the edge that is at the closest distance and most
parallel to it. The search is done by traversing the edges
counter-clockwise around the face. The edges are not
tested until a vertex angle of less than 135� is passed. The

edge selected in this process is called the opposite edge. If
the face only has three curves, then the face is a blend
face only if all the tested curves meet the first rule, and
all edges are attached to other blend faces.

After all the blend surfaces have been detected, the
blend surfaces themselves are traversed going from their
edges to adjacent faces using a union-find algorithm to
group the blend faces that are connected by an edge. The

Fig. 7 Tangential face intersections

Table 4 Test suite part numbers and corresponding time to mesh

Part number Element size Time to mesh (min.)

1 2 813
2 8 39
3 1 579
4 10 327
5 0.1 114
6 4 0.17
7 1 2
8 5 369
9 2 15
10 0.5 102
11 0.005 2.5
12 3.5 23
13 7 273
14 2 719
15 0.2 18
16 0.5 0.083
17 23.9 0.083
18 2 36
19 2 146
20 0.009 425.5
21 0.5 0.017
22 10 0.083
23 2 58
24 5 13.5

Fig. 8 Test parts versus the time
to mesh
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groups of blend faces metric is calculated by counting up
the total number of blend groups found from this
algorithm. Figure 6a, b and c are test parts with blend
faces. The blend algorithm is able to find all the blend
faces in these models. Several faces that would typically
not be considered blend faces by visual inspection are
also included as a side effect of the algorithm. In general,
the algorithm is able to detect blend surfaces, and
especially the hidden ones shown in Figure 6c that make
mesh generation difficult.

3.2.5 Number of tangential face intersections

The final metric included in the negative metrics is the
number of tangential face intersections. This metric seeks
to find dissimilar geometrical faces that intersect tan-
gentially and cause problems with mesh generation.
Having two faces intersect tangentially is generally not a
problem for mesh generation. Figure 7a shows an
example of two faces that intersect tangentially that offer
no resistance to mesh generation. In this figure, the two

faces intersect without creating any small features.
Figure 7b, however, shows an example of the tangency
causing small features. Mesh generation is difficult when
tangential face intersections are ‘‘capped’’ by a face with
small vertex angles at the intersection. These configu-
rations are identified in this metric.

Tangential face intersections that cause problems are
identified by the following 4 steps. First, the user must
gather all the faces and vertices that have small vertex
angles. This information can be reused from the com-
putation of the small and large angles metric discussed in
Sect. 3.2.2. Second, identify the face that makes a 90�
dihedral angle with the face with the small vertex angle.
This face will be attached to either of the two edges that
meet at the vertex with the small angle. Third, on the
face found in step two, find the edge that is also
connected to the vertex with the small angle but is not
attached to the face where the small angle is. And
fourth, measure the dihedral angle for this edge to en-
sure that this edge has a tangential intersection. The
angle should be 180�. If all of these steps are done suc-
cessfully, a tangential face intersection is recorded and
counted. The metric is computed by counting all such
instances.

4 Results

The meshing complexity metric is best evaluated on real
CAD geometries rather than contrived test parts. A set
of 24 CAD models were obtained for this purpose. The
models range from simplistic to challenging in terms of
their difficulty with respect to mesh generation. This
section will discuss evaluation of the twenty-four models
and the resulting meshing complexity metrics.

4.1 Test suite

To test the validity of the meshing complexity metric,
CAD models were obtained and meshed with hexahe-
dral elements. Twenty-four test models were obtained
from various industrial partners. The meshing was done
with the CUBIT software package [36] that contains the
meshing algorithms described in Sect. 1.2. One of the
authors performed all of the meshing so that there
would be no differences in the time taken to mesh the
parts based on differences in user expertise. All the time
taken to mesh the models was recorded, including time
spent thinking about approaches, trying different ap-
proaches, and time spent recovering from user mistakes.
This is important to note since the meshing complexity
metric must try to capture in some form which geome-
tries and topologies cause the user more time. Time
wasted due to bugs in the meshing software was dis-
carded because of the assumptions stated in Sect. 2.1.
Table 4 shows the part numbers, the element size for
which they were meshed, and the total time taken to

Fig. 9 Test parts 3 (a), 13 (b) and 14 (c)
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generate the mesh. Figure 8 shows a plot of part num-
bers and the times taken to generate the mesh in order to
visualize the variations of the models. The time to mesh
varies from under a minute to 833 min for the part that
took the longest. Three of the parts and resulting meshes
are shown in Fig. 9. Additionally, the parts shown in
Fig. 6a–c are part numbers 1, 20 and 5, respectively.

4.2 Correlation of Data

The proposed meshing complexity metric is compared
with times taken to mesh each part in the test suite.
The results of this experiment are shown in Fig. 10;
where, time to mesh is on the x-axis while the mesh
metric is plotted on the y-axis on the logarithmic scale.
The logarithmic scale is used to plot this axis since the
mesh metric asymptotically approaches zero as the
parts become more complex. The graph shows that the
meshing complexity metric predicts the time to mesh
within some range of error. Specifically, it shows that
as the time required to mesh the parts increases, the
metric value decreases asymptotically towards zero.
For cases where the metric does not correlate well, this
could be due to both the limitations of the new metric
and the difficulty in prediction of human computer
interactions.

Table 5 shows the results of the individual base
metrics for the 24 test cases. For most models, the
dominating base metric is the Sweep detection metric.
Figure 11 shows a plot of the time to mesh each of the
test cases against the corresponding Sweep detection
values. The graph indicates that the lower Sweep detec-
tion values correspond to shapes that took longer to
mesh. The graph, however, also shows several excep-
tions to this trend.

Table 6 shows the results of the individual negative
metrics with the corresponding meshing times and part
numbers. This table shows that the models that took
longer to mesh contained more negative features, indi-
cating the adverse affect these features have on the
meshing process.

Table 6 Negative metric values for test suite

Part
number

Time
to mesh

Small
edge, face,
loop

Bad
angles

Bad
geometric def.

Blend
groups

Tangential
meetings

1 813 2 17 9 23 30
2 39 0 0 0 4 0
3 579 5 8 2 5 16
4 327 10 2 6 5 0
5 114 4 4 0 3 0
6 0.17 0 0 0 0 0
7 2 1 0 0 0 0
8 369 6 1 11 12 2
9 15 4 2 0 1 0
10 102 2 12 0 0 8
11 2.5 1 0 0 0 0
12 23 1 0 0 0 0
13 273 6 2 0 11 4
14 719 42 15 0 50 30
15 18 13 0 0 0 0
16 0.083 0 0 0 0 0
17 0.083 0 0 0 0 0
18 36 1 0 0 3 0
19 146 0 2 0 13 0
20 425.5 3 13 0 11 10
21 0.017 0 0 0 0 0
22 0.083 0 0 0 0 0
23 58 0 0 0 18 0
24 13.5 0 0 0 0 0

Table 5 Base metric values for test suite

Part number Time to mesh Inverse topology count Sweep detection Cartesian edges

1 813 0.044323607 0.021336 0
2 39 0.028339818 0.8 0
3 579 0.089935065 0.000964 0
4 327 0.061111111 0.038482 0
5 114 0.1875 0.56875 0.419355
6 0.17 0.146320346 1 0
7 2 1 0.95 0
8 369 0.052859421 0.08 0
9 15 0.17375 0.545189 0
10 102 0.203917051 0.428571 0
11 2.5 0.348484848 1 0
12 23 0.136090226 0.000237 0.75
13 273 0.059738458 0.026286 0
14 719 0.019699932 0.011189 0
15 18 0.070211039 0.8 0
16 0.083 1 1 1
17 0.083 1 1 0.4
18 36 0.158004158 0.486486 0
19 146 0.049500958 0.041284 0
20 425.5 0.049331551 0.030319 0
21 0.017 0.529411765 1 0
22 0.083 1 1 0
23 58 0.055927835 0.031253 0.497908
24 13.5 0.366666667 0.8 0.571429
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Using the data in Tables 5 and 6, the weights of the
base metrics in Sect. 3.1.4, and Eq. 1, the meshing
complexity metric results in Fig. 10 can be computed.
To demonstrate this, the meshing complexity metric is
calculated for part 1. The values for various parameters
of Equation 1 are obtained from the first row of Ta-
bles 5 and 6 as: B1=0.044323607, w1=.1, B2=0.021336,
w2=0.5, B3=0, N1=2, N2=17, N3=9, N4=23 and
N5=30. After inserting these values into Eq. 1, the
meshing complexity C for part 1 is 2.24574·10�6, as
indicated in Fig. 10.

Several improvements could be introduced to the
meshing complexity metric. First, the metric lacks a
general base metric, which determines how sweepable
the part is. While the sweep detection metric attempts
this, it is not always accurate and can give incorrect
answers at times. If a general base metric is found, it
would also most likely lead to automatic decomposition
approaches to vastly reduce the time to mesh for hexa-
hedral elements.

Second, not all variables that affect meshing com-
plexity are accounted for in this study. For example, in

Sect. 2.1, it was assumed that user expertise would not be
considered a factor. In theory, this should be the case if
the metric compares parts that were meshed by the same
user. In practice, however, this may not be true as hu-
man interaction is difficult to predict. For example, on
some of the parts in the test suite the solution to meshing
the part was immediately recognized, leading to a
shorter time to generate the mesh. Other problems re-
quired more thinking, and time spent reflected this trial
and error. To improve the metric, the human computer
interactions aspect of the problem could be incorpo-
rated. Despite these inaccuracies, the proposed metric
does predict the relative difficulty between the parts in
terms of the time required to generate a valid finite ele-
ment mesh within a range of error.

5 Conclusion

A new metric is presented to predict the meshing com-
plexity of CAD parts. Meshing complexity refers to the
relative difficulty to generate an unstructured hexahedral

Fig. 10 Meshing complexity
metric versus time to mesh
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mesh between various CAD parts. Two kinds of metrics
have been identified; they are called base metrics and
negative metrics, respectively. Base metrics analyze the
shape of the parts while negative metrics detect features
that traditionally cause problems with mesh generation.
Three base metrics have been identified: inverse topol-
ogy count, sweep detection and Cartesian edges. The
inverse topology count metric captures complexity that
typically exists as the number of entities in the model
increases. The sweep detection metric identifies the de-
gree to which the model can be swept by inspection of
both the topology and geometry. The Cartesian edges
metric measures the level to which the model is blocky.
Five negative metrics are proposed: number of small
edges, faces and close face loops; number of small and
large angles; number of bad CAD definitions; number of
groups of blend faces; and the number of tangential face
intersections. The number of small edges, faces and close
face loops metric is determined by the element size
provided by the user and identifies small regions that are
difficult to mesh. The number of bad CAD definitions

metric is obtained by identifying the bad geometric
definitions that can impede mesh generation. The num-
ber of groups of blend faces and the number of tan-
gential face intersections metrics identify the often
harmful blend faces and tangential intersections through
sets of proposed rules. The base and negative metrics are
combined to form the proposed metric.

The proposed complexity metric is compared with the
times to mesh using a set of 24 test cases consisting of
real parts. The metric correlates well with the timing
data. For some parts the metric does not correlate
accurately due to both the limitations of the metric and
the difficulty in predicting human computer interactions.

The proposed metric is intended to be used for two
reasons. First, by analysts and managers to aid in pre-
dicting the time it will take to generate a mesh on certain
CAD models. Based on previously meshed models, and
the metric values computed for them, analysts and
mangers can compute the complexity of new models
allowing them to predict the time required for mesh
generation. Finally, the proposed metric could also be

Fig. 11 Sweep detection metric
versus time to mesh (min)
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used to help measure progress that is made in research in
unstructured hexahedral mesh generation.
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